Las Leyes de Mendel
Las Leyes de Mendel son un conjunto de reglas básicas sobre la transmisión por herencia de las características de los organismos padres a sus hijos. Se consideran reglas más que leyes, pues no se cumplen en todos los casos, por ejemplo cuando los genes están ligados, es decir, se encuentran en el m ismo cromosoma. Estas reglas básicas de herencia constituyen el fundamento de la genética. Las leyes se derivan del trabajo realizado por Gregor Mendel publicado en el año 1865 y el 1866, aunque éste fue ignorado por largo tiempo hasta su redescubrimiento en 1900.
Tabla de contenidos - Historia
- Experimentos
- Leyes de Mendel
3.1 Ley de la segregación de caracteres independientes 3.2 Ley de la transmisión independiente de caracteres 3.3. Patrones de herencia mendeliana
- Estructura génica del cromosoma Y
- El árbol genealógico
- Herencias dominantes
- Herencias recesivas
- Fenómenos que dificultan el análisis de la segregación mendeliana
- Conclusiones
- Referencias
|
//
Historia de las Leyes de Mendel
Las leyes de la herencia fueron derivadas de las investigaciones sobre hibridación entre plantas realizadas por Gregor Mendel, un monje agustino austriaco, en el siglo XIX. Entre los años 1856 y 1863, Mendel cultivó y analizó cerca de 28,000 plantas de la especie Pisum sativum (planta del guisante). Sus experimentos le llevaron a concebir dos generalizaciones que después serían conocidas como Leyes de Mendel de la herencia o herencia mendeliana. Las conclusiones se encuentran descritas en su artículo titulado "Experimentos sobre hibridación de plantas" (cuya versión inglesa se denomina “Experiments on Plant Hybridization” y la versión original en alemán “Experimente auf Pflanzenkreuzung”), que fue leído a la Sociedad de Historia Natural de Brno el 8 de febrero y el 8 de marzo de 1865 y posteriormente publicado en 1866.
Mendel envió su trabajo al botánico suizo Karl von Nägeli (una de las máximas autoridades de la época en el campo de la biología), fue él quien le sugirió que realizara su serie de experimentos en varias especies del género Hieracium. Mendel no pudo replicar sus resultados, ya que posteriormente a su muerte, en 1903, se descubrió que en Hieracium se producía un tipo especial de partenogénesis, provocando desviaciones en las proporciones mendelianas esperadas. De su experimento con Hieracium, Mendel posiblemente llegó a pensar que sus leyes sólo podían ser aplicadas a ciertos tipos de especies y, debido a esto, se apartó de la ciencia y se dedicó a la administración del monasterio del cuál era monje. Murió en 1884, completamente ignorado por el mundo científico.
En 1900, sin embargo, el trabajo de Mendel fue redescubierto por tres científicos europeos, el holandés Hugo de Vries, el alemán Carl Correns, y el austríaco Erich von Tschermak, por separado, que sin conocer los trabajos de Mendel llegaron a las mismas conclusiones que él. De Vries fue el primero que publicó sobre las Leyes, y Correns, tras haber leído su artículo y haber buscado en la bibliografía publicada, en la que encontró el olvidado artículo de Mendel, declaró que éste se había adelantado y que el trabajo de De Vries no era original.
En Europa, William Bateson fue quien impulsó en 1900 el conocimiento de las leyes de Mendel. Al dar una conferencia en la Sociedad de Horticultura, tuvo conocimiento del trabajo de Mendel, a través del relato de Hugo de Vries; así encontró el refrendo de lo que había estado experimentando. Él fue, pues, quien dio las primeras noticias en Inglaterra de las investigaciones de Mendel. En 1902, publicó “Los principios mendelianos de la herencia”: una defensa acompañada de la traducción de los trabajos originales de Mendel sobre hibridación. Además, fue el primero en acuñar términos como "genética", "gen" y "alelo" para describir muchos de los resultados de esta nueva ciencia biológica.
En 1902, Theodore Boveri y Walter Sutton, trabajando de manera independiente, llegaron a una misma conclusión y propusieron una base biológica para los principios mendelianos, denominada “Teoría cromosómica de la herencia”. Esta teoría sostiene que los genes se encuentran en los cromosomas y al lugar cromosómico ocupado por un gen se le denominó locus (se habla de loci si se hace referencia al lugar del cromosoma ocupado por varios genes). Ambos se percataron de que la segregación de los factores mendelianos (alelos) se correspondía con la segregación de los cromosomas durante la división meiótica (por tanto, existía un paralelismo entre cromosomas y genes).
Algunos trabajos posteriores de biólogos y estadísticos tales como R.A. Fisher (1911) mostraron que los experimentos realizados por Mendel tenían globalidad en todas las especies, mostrando ejemplos concretos de la naturaleza. Los principios de la segregación equitativa (Primera Ley de Mendel) y la transmisión independiente de la herencia (Segunda ley de Mendel) derivan de la observación de la progenie de cruzamientos genéticos. No obstante, Mendel no conocía los procesos biológicos que producían esos fenómenos.
Así, puede considerarse que las Leyes de Mendel reflejan el comportamiento cromosómico durante la meiosis: la primera ley responde a la migración aleatoria de los cromosomas homólogos a polos opuestos durante la anafase I de la meiosis (tanto los alelos como los cromosomas homólogos segregan de manera equitativa o 1:1 en los gametos) y la segunda ley, al alineamiento aleatorio de cada par de cromosomas homólogos durante la metafase I de la meiosis (por lo que genes distintos y pares diferentes de cromosomas homólogos segregan independientemente).
Los Experimentos de Mendel
Los siete caracteres que observó G. Mendel en sus experiencias genéticas con los guisantes.
Mendel publicó sus experimentos con guisantes en 1865 y 1866. Las principales ventajas de la elección de Pisum sativum como organismo modelo: su bajo coste, tiempo de generación corto, elevado índice de descendencia, diversas variedades dentro de la misma especie (color, forma, tamaño, etc.) y otras características típicas de las plantas experimentales, como poseer caracteres diferenciales constantes.
Pisum sativum es una planta autógama, es decir, se autofecunda. Mendel lo evitó emasculándola (eliminando las anteras). Así, pudo cruzar exclusivamente las variedades deseadas. También embolsó las flores para proteger a los híbridos de polen no controlado durante la floración. Llevó a cabo un experimento control realizando cruzamientos durante dos generaciones sucesivas mediante autofecundación para obtener líneas puras para cada carácter.
Mendel realizó la misma serie de cruzamientos en todos sus experimentos. Cruzó dos variedades o líneas puras diferentes respecto de uno o más caracteres. Como resultado obtenía la primera generación filial (F1), en la cuál observó la uniformidad fenotípica de los híbridos. Posteriormente, la autofecundación de los híbridos de F1 dio lugar a la segunda generación filial (F2), y así sucesivamente. También realizó cruzamientos recíprocos, es decir, alternaba los fenotipos de las plantas parentales:
♀P1 x ♂P2
♀P2 x ♂P1
(siendo P la generación parental y los subíndices 1 y 2 los diferentes fenotipos de ésta).
Además, llevó a cabo retrocruzamientos, que consisten en el cruzamiento de los híbridos de la primera generación filial (F1) por los dos parentales utilizados, en las dos direcciones posibles:
♀F1 x ♂P2 y ♀P2 x ♂F1 (cruzamientos recíprocos)
♀F1 x ♂P1 y ♀P1 x ♂F1 (cruzamientos recíprocos)
Los experimentos demostraron que:
- la herencia se transmite por elementos particulados (refutando, por tanto, la herencia de las mezclas)
- siguen normas estadísticas sencillas, resumidas en sus dos principios.
Las Leyes de Mendel
Primera Ley: Ley de la segregación de caracteres independientes
Conocida también como la primera Ley de Mendel, de la segregación equitativa o disyunción de los alelos. Esta ley establece que durante la formación de los gametos cada alelo de un par se separa del otro miembro para determinar la constitución genética del gameto filial. Es muy habitual representar las posibilidades de hibridación mediante un cuadro de Punnett.
Mendel obtuvo esta ley al cruzar diferentes variedades de individuos heterocigotos (Aa), y observó en sus experimentos que obtenía muchos guisantes con características de piel amarilla y otros (menos) con características de piel verde, comprobando que la proporción era de 3:4 de color amarilla y 1:4 de color verde (proporción 3:1).
Según la interpretación actual, los dos alelos, que codifican para cada característica, son segregados durante la producción de gametos mediante una división celular meiótica. Esto significa que cada gameto va a contener un solo alelo para cada gen, lo cual permite que los alelos materno y paterno se combinen en el descendiente, asegurando la variación.
Para cada característica, un organismo hereda dos alelos, uno para cada parental. Esto significa que en las células somáticas, un alelo proviene de la madre y otro del padre. A su vez, estos pueden ser homocigóticos (si presentan dos copias del mismo alelo) o heterocigóticos (si presentan una copia de cada alelo).
Segunda Ley de Mendel: Ley de la transmisión independiente de caracteres
Mediante la Segunda Ley, Mendel concluyó que diferentes rasgos son heredados independientemente unos de otros. No existe relación entre ellos, por lo que el patrón de herencia de un rasgo no afectará al patrón de herencia de otro. Sólo se cumple en aquellos genes que no están ligados (en diferentes cromosomas) o que están en regiones muy separadas del mismo cromosoma. Es decir, siguen las proporciones 9:3:3:1.
Otros Patrones de herencia mendeliana
Mendel describió dos tipos de "factores" (genes) de acuerdo a su expresión fenotípica en la descendencia, los dominantes y los recesivos, pero existe otro factor a tener en cuenta en el humano y es el hecho de que los individuos de sexo femenino tienen dos cromosomas X mientras los masculinos tienen un cromosoma X y otro Y, con lo cual quedan conformados cuatro modos o "patrones" de herencia según los cuales se puede trasmitir una alelo de un gen o carácter:
-
Alelo dominante ubicado en un autosoma (herencia autosómica dominante).
-
Alelo recesivo ubicado en un autosoma (herencia autosómica recesiva).
-
Alelo dominante situado en el cromosoma X (herencia dominante ligada al X).
-
Alelo recesivo situado en el cromosoma X (herencia recesiva ligada al cromosoma X).
Estructura génica del cromosoma Y
Por tener un solo cromosoma X, a los individuos de sexo masculino no se les pueden aplicar los términos "homocigoto" o "heterocigoto" para genes ubicados en este cromosoma. Ya sean genes que expresen el carácter dominante o recesivo, si están situados en el cromosoma X, los varones siempre lo expresarán y al individuo que lo porta se le denomina hemicigoto.
De lo anterior se deduce que debido a que las mujeres tienen un solo tipo de cromosomas sexuales, el X, sus gametos siempre tendrán la dotación cromosómica 23,X, mientras los masculinos pueden portar una X, dando lugar a un individuo femenino, o una Y, con lo que se originaría un individuo masculino. Debido a esto se dice que las mujeres son homogaméticas (todos sus gametos tienen igual constitución) y que los hombres son heterogaméticos (tienen gametos 23,X y 23,Y).
A diferencia del cromosoma Y, el cromosoma X tiene gran cantidad de genes activos que codifican para importantes proteínas, tales como el factor VIII de la coagulación. Podría pensarse, por tanto, que si las mujeres tienen dos X deben tener el doble de los productos o proteínas cuyos genes están en ese cromosoma con relación a los individuos del sexo masculino. Sin embargo, esto no ocurre así. Una de los dos cromosomas X con que cuenta una célula femenina, muy temprano en el desarrollo embrionario, en la etapa de mórula, se condensa, se inactiva y se adosa a la membrana nuclear pasando a constituir el cuerpo o corpúsculo de Barr.
Hay dos aspectos muy importantes en este proceso: primero se inactiva al azar cualquiera de las dos X, ya sea la heredada de la madre o del padre,por lo que las células que deriven de ésta durante el proceso de crecimiento y desarrollo mantendrán en adelante inactivado el mismo cromosoma X.
El árbol genealógico
Como en cualquier otra especialidad médica, en genética adquiere enorme importancia la anamnesis del individuo enfermo y sus familiares, pero, adicionalmente, es vital establecer los lazos de parentesco entre los individuos afectados y los supuestamente sanos. Por esta razón se utiliza el llamado árbol genealógico o pedigree, en el que mediante símbolos internacionalmente reconocidos se describe la composición de una familia, los individuos sanos y enfermos, así como el número de abortos, fallecidos, etc.
Herencias dominantes
Cuando el alelo del gen productor de una determinada enfermedad o característica se expresa aún estando en una sola dosis se denomina dominante. Las familias donde se segrega muestran un árbol genealógico en que, como regla, hay varios individuos que lo expresan y los afectados tienen un progenitor igualmente afectado. No obstante, hay diferencias de acuerdo a si el gen está ubicado en un autosoma o en el cromosoma X.
En la herencia autosómica dominante se cumplen los siguientes hechos:
-
Varios individuos afectados.
-
Los afectados son hijos de afectados.
-
Se afectan por igual hombres y mujeres.
-
Como regla, la mitad de la descendencia de un afectado hereda la afección.
-
Los individuos sanos tienen hijos sanos.
-
Hay hombres afectados hijos de hombres afectados (lo cual excluye la posibilidad de que el gen causante de la afección está ubicado en el cromosoma X, que en los varones procede de la madre).
-
El patrón ofrece un aspecto vertical.
En este caso los individuos afectados son usualmente heterocigóticos y tienen un riesgo del 50% en cada intento reproductivo de que su hijo herede la afección independientemente de su sexo.
En la herencia dominante ligada al cromosoma X, aunque el alelo del gen sea dominante, si está ubicado en el cromosoma X, el árbol genealógico suele mostrar algunas diferencias con respecto al de la herencia autosómica dominante:
-
Aunque los afectados usualmente son hijos de afectados y la mitad de la descendencia presenta la afección, no se puede identificar varones que hayan heredado la afección de su padre, o sea, no hay trasmisión varón-varón, puesto que los padres dan a sus hijos el cromosoma Y.
-
Igualmente es llamativo que hay un predominio de mujeres afectadas pues mientras estas pueden heredar el gen de su madre o de su padre, los varones sólo lo adquieren de su madre.
-
Una mujer afectada tendrá el 50% de su descendencia afectada, mientras que el hombre tendrá 100% de hijas afectadas y ningún hijo afectado.
Herencias recesivas
Cuando el alelo del gen causante de la afección es recesivo, por regla general el número de afectados es mucho menor y suele limitarse a la descendencia de una pareja, pero es más evidente la diferencia en la trasmisión según la mutación esté situada en un autosoma o en el cromosoma X.
En la herencia autosómica recesiva llama la atención la aparición de un individuo afectado fruto de dos familias sin antecedentes. Esto ocurre pues ambos padres de este individuo son heterocigóticos para la mutación, la cual, por ser recesiva, no se expresa ya que existe un alelo dominante normal, pero, como estudiamos en las leyes de Mendel, existe un 25% en cada embarazo, de que ambos padres trasmitan el alelo mutado, independientemente del sexo del nuevo individuo. Por aparecer usualmente en la descendencia de un matrimonio, se dice que su patrón es horizontal. Otro aspecto a señalar es que cuando existe consanguinidad, aumenta la probabilidad de aparición de este tipo de afecciones, debido a que ambos padres comparten una parte de su genoma proporcional al grado de parentesco entre ellos.
En la herencia recesiva ligada al cromosoma X es evidente que los individuos afectados son todos del sexo masculino; esto se justifica porque al tener la mujer dos X y ser el alelo del gen recesivo, el alelo dominante normal impide su expresión, mientras el varón hemicigótico si tiene la mutación la expresará. También se observa que entre dos varones afectados existe una mujer, que en este caso es portadora de la mutación. La probabilidad de descendencia afectada dependerá del sexo del progenitor que porta la mutación:
Fenómenos que dificultan el análisis de la segregación mendeliana
HERENCIAS INFLUIDAS POR EL SEXO Y LIMITADAS AL SEXO:
Una mutación puede estar influida por el sexo, debido al efecto del metabolismo endocrino que diferencia al hombre y a la mujer. Por ejemplo la calvicie se debe al efecto de un gen que se expresa como autosómico dominante, sin embargo en una familia con la segregación de este gen solo los hombres padecen de calvicie y las mujeres tendrán su cabello más escaso después de la menopausia. Otro ejemplo puede ser la deficiencia de la enzima 21 hidroxilasa que interviene en el metabolismo de los glucocorticoides. Cuando esta enzima está ausente la síntesis de glucocorticoides se desplaza hacia la formación de testosterona y esta hormona está comprometida en la embriogénesis de los genitales externos del varón, por lo que su presencia anormal en el desarrollo de un feto femenino produce la virilización de los genitales femeninos, mientras que en el caso de un feto varón, solo incrementa el desarrollo de los masculinos. Una anormalidad de este tipo, permitirá sospechar un diagnostico clínico más rápidamente en una niña, basado en el examen de los genitales del recién nacido, que en un niño. Las herencias limitadas al sexo, como su nombre indica, pueden estar comprometidos mutaciones de genes con loci en cromosomas autosómicos cuya expresión solamente tiene lugar en órganos del aparato reproductor masculino o femenino. Un ejemplo es el defecto congénito septum vaginal transverso, de herencia autosómica recesiva, o la deficiencia de 5 reductasa que convierte a la testosterona en dihidrotestosterona que actúa en la diferenciación de los genitales externos masculinos, por lo que su ausencia simula genitales femeninos cuando el niño nace.
PENETRANCIA DE UN GEN O DE UNA MUTACIÓN ESPECIFICA: Penetrancia es el término que se emplea para referirse a la expresión en términos de todo o nada. Si la mutación se expresa en menos del 100% de los individuos portadores o heterocigóticos se dice que la mutación tiene una penetrancia incompleta o reducida y que ese individuo aparentemente “sano” para el carácter o enfermedad que se estudia en la familia puede trasmitir la mutación a su descendencia y éstos expresar el defecto. La penetrancia reducida parece ser el efecto de la relación de la mutación en cuestión y otros genes del genoma , con los cuales se encuentra interactuando.
EXPRESIVIDAD DE UN GEN O MUTACIÓN ESPECIFICA: Expresividad se usa para referirse al grado de severidad que se manifiesta en el fenotipo. en términos clínicos, es sinónimo de gravedad. La expresión de un gen también depende de la relación de éste con el resto del genoma, pero también de la relación genoma-ambiente. Para referirse a estas gradaciones fenotípicas se utiliza el término expresividad variable del gen o de la mutación.
EFECTO PLEITRÓPICO DE UN GEN O MUTACIÓN ESPECIFICA: Con en término pleiotropía o efecto pleiotrópico de un gen se hace referencia a todas las manifestaciones fenotípicas en diferentes órganos o sistemas que son explicables por una simple mutación. Un ejemplo clásico para explicar este término lo constituye el síndrome Marfan, cuyo mutación afecta al gen FBN1 que codifica a la proteína fibrilina. Esta proteína se encuentra en el tejido conectivo y explica las manifestaciones esqueléticas, oculares y cardiovasculares que caracterizan al síndrome.
HETEROGENEIDAD GENÉTICA: Este término que se aplica tanto a mutaciones en genes localizados en diferentes cromosomas que producen expresión similar en el fenotipo (heterogeneidad no alélica) como a mutaciones que afectan a diferentes sitios del mismo gen (heterogeneidad alélica). Esta categoría complica extraordinariamente el estudio etiológico de variantes del desarrollo de origen genético y constituye una amplia y fundamental fuente de diversidad genética del desarrollo.
INACTIVACION DEL CROMOSOMA X Se ha observado que en las células somáticas del sexo femenino (46,XX), solo uno de los dos cromosomas X es activo. El otro permanece inactivo y aparece en células en interfase como un cuerpo denso fuertemente coloreado en la periferia del núcleo que recibe el nombre de cuerpo de Barr. La inactivación del cromosoma X tiene lugar en el estado de mórula, alrededor del tercer día después de la fertilización y se completa, en la masa de células internas que darán origen al embrión, al final de la primera semana de desarrollo embrionario. La selección del cromosoma X que se inactivará, es un fenómeno generalmente aleatorio teniendo en cuenta que al ocurrir la fecundación cada cromosoma X tiene origen materno y paterno, en unas células se inactivará el X materno (Xm) y en otras el X paterno (Xp). Una vez que se inactiva uno de los dos cromosomas X las células descendientes mantendrán el mismo cromosoma X inactivo originándose un clon celular (Xm) o (Xp) activos. Es decir al inicio de la inactivación, ésta es al azar, pero una vez ocurrida se mantiene el mismo cromosoma X que se inactivó en la primera célula del clon. La inactivación (desactivación) del cromosoma X está determinada por el gen XIST. Este gen esta involucrado en la transcripción específica de inactivación que funciona por un mecanismo de metilación preferencial, esto significa que si no hay ninguna alteración de estructura en los dos cromosomas X del genoma femenino, la inactivación debe ocurrir de forma aleatoria pero si existiera alguna alteración con gran compromiso en la función de uno de los dos cromosomas X habría una activación no completamente aleatoria. El locus del gen XIST se encuentra localizado en Xq13.3. La inactivación del X determina consecuencias genéticas y clínicas:
-
Compensación de dosis: iguala la dosis de productos de genes con el hemicigótico para genes localizados en el cromososa X., determinando concentraciones proteicas similares en ambos sexos, para genes ligados al X.
-
Variaciones en la expresión de mutaciones en mujeres heterocigóticas: por ejemplo, presencia de síntomas más o menos severos en mujeres portadoras para hemofilias A o B, distrofia muscular Duchenne, distrofias retinianas recesivas ligadas al X.
-
Los órganos femeninos se comportan como mosaicismos. Este fenómeno se observa en el albinismo ocular recesivo ligado al X o en el test inmunohistoquímico para la detección de la distrofina en mujeres heterocigóticas para la distrofia muscular Duchenne.
NUEVAS MUTACIONES CON EXPRESIÓN DOMINANTE Cuando tiene lugar una mutación de novo que se expresa como dominante o sea en un genotipo heterocigótico, ocurre que padres que no presentan el efecto de la mutación pueden tener un hijo o hija afectados. La ausencia de antecedentes familiares, una vez que se excluyen fenómenos como la penetrancia reducida del gen y variaciones mínimas de la expresividad dificulta llegar al planteamiento de una mutación de novo cuando en la literatura el defecto o enfermedad no ha sido reportada con anterioridad, con un tipo específico de herencia.
EFECTO DE LETALIDAD EN UN GENOTIPO ESPECIFICO Algunas mutaciones se expresan de forma tan severa que producen letalidad en un genotipo específico. Un ejemplo pudiera ser el efecto de una doble dosis de una mutación que se expresa como dominante o el efecto en un genotipo hemicigótico, como ocurre en la Incontinencia pigmenti, enfermedad dominante ligada al cromosoma X.
Conclusiones
Es un error muy extendido suponer que la uniformidad de los híbridos que Mendel observó en sus experimentos es una ley de transmisión, pues la dominancia nada tiene que ver con la transmisión, sino con la expresión del genotipo. Por lo que esta observación mendeliana no suele considerarse una ley. Las leyes mendelianas de transmisión son por lo tanto dos: la Ley de segregación de caracteres independientes (1ª ley) y la Ley de la Herencia Independiente de Caracteres (2ª ley).
Recorriendo la web de Wikipedia se puede observar este hecho, por ejemplo, en las versiones inglesa, francesa y portuguesa consideran correctamente que las Leyes de Mendel son dos. En cambio, en otras versiones como la catalana, la alemana, la italiana y la vasca siguen considerando la Ley de la Uniformidad como la primera Ley de Mendel.
Incluso a nivel docente y bibliográfico sigue permaneciendo vigente esta equivocación que debería ser aclarada.
Mas información sobre herencia en Genética Animal y Veterinaria: www.geneticaveterinaria.com
Otros artículos de interés sobre genética y veterinaria:
Vea también Noticias sobre Genética animal y veterinaria
Referencias
Libros
- Griffiths, A.J.F., S.R. Wessler, R.C. Lewontin & S.B. Carrol (2008). Introducción al análisis genético. 9th edición. McGraw-Hill Interamericana
- Alberts, Bray, Hopkin, Johnson, Lewis, Raff, Roberts, Walter. Introducción a la Biología Celular. Editorial Médica Panamericana.